46 research outputs found

    Nonlocal thermoelastic vibrations for variable thermal conductivity nanobeams due to harmonically varying heat

    Get PDF
    This article constructs a new model of nonlocal thermoelasticity beam theory with phase-lags considering the thermal conductivity to be variable. A nanobeam subjected to a harmonically varying heat is considered. The nonlocal theories of coupled thermoelasticity and generalized thermoelasticity with one relaxation time can be extracted as limited and special cases of the present model. The effects of the variable thermal conductivity parameter, the nonlocal parameter, the phase-lags and the angular frequency of thermal vibration on the lateral vibration, the temperature, the displacement, and the bending moment of the nanobeam are investigated

    Fractional Thermoelasticity Model of a 2D Problem of Mode-I Crack in a Fibre-Reinforced Thermal Environment

    Get PDF
    A model of fractional-order of thermoelasticity is applied to study a 2D problem of mode-I crack in a fibre-reinforced thermal environment. The crack is under prescribed distributions of heat and pressure. The normal mode analysis is applied to deduce exact formulae for displacements, stresses, and temperature. Variations of field quantities with the axial direction are illustrated graphically. The results regarding the presence and absence of fiber reinforcement and fractional parameters are compared. Some particular cases are also investigated via the generalized thermoelastic theory. The presented results can be applied to design different fibre-reinforced isotropic thermoelastic elements subjected to the thermal load in order to meet special technical requirements

    Thermoelastic Vibration of Temperature-Dependent Nanobeams Due to Rectified Sine Wave Heating—A State Space Approach

    Get PDF
    In this study, the second type of Green and Naghdi's thermoelasticity theory is applied to present the vibration of a nanobeam subjected to rectified sine wave heating based upon the nonlocal thermoelasticity theory. Both Young's modulus and thermal conductivity are considered to be linear functions of the temperature. The Laplace transform domain is adopted to solve the governing partial differential equations using the state space approach. Numerical computations are carried out using the inverse of Laplace transforms. The effects of nonlocal parameter and angular frequency on the thermal vibration quantities are discussed. The results of all quantities are illustrated graphically and investigated

    Thermomagnetic behavior of a semiconductor material heated by pulsed excitation based on the fourth-order MGT photothermal model

    Get PDF
    This article proposes a photothermal model to reveal the thermo-magneto-mechanical properties of semiconductor materials, including coupled diffusion equations for thermal conductivity, elasticity, and excess carrier density. The proposed model is developed to account for the optical heating that occurs through the semiconductor medium. The Moore–Gibson–Thompson (MGT) equation of the fourth-order serves as the theoretical framework to establish the photothermal model. It is well-known that the optical and heat transfer properties of such materials behave as random functions of photoexcited-carrier density; therefore, the current model is remarkably more reliable compared to the earlier closed-form theories which are limited to a single form. The constructed theoretical framework is able to investigate the magneto-photo-thermoelastic problems in a semiconductor medium due to laser pulse excitation as a case study. Some parametric studies are used to exhibit the impact of thermal parameters, electromagnetic fields, laser pulses and thermoelectric coupling factors on the thermomagnetic behavior of physical variables. Finally, several numerical examples have been presented to draw the distributions of the examined field variables

    TEMPERATURE-DEPENDENT PHYSICAL CHARACTERISTICS OF THE ROTATING NONLOCAL NANOBEAMS SUBJECT TO A VARYING HEAT SOURCE AND A DYNAMIC LOAD

    Get PDF
    In this article, the influence of thermal conductivity on the dynamics of a rotating nanobeam is established in the context of nonlocal thermoelasticity theory. To this end, the governing equations are derived using generalized heat conduction including phase lags on the basis of the Euler–Bernoulli beam theory. The thermal conductivity of the proposed model linearly changes with temperature and the considered nanobeam is excited with a variable harmonic heat source and exposed to a time-dependent load with exponential decay. The analytic solutions for bending moment, deflection and temperature of rotating nonlocal nanobeams are achieved by means of the Laplace transform procedure. A qualitative study is conducted to justify the soundness of the present analysis while the impact of nonlocal parameter and varying heat source are discussed in detail. It also shows the way in which the variations of physical properties due to temperature changes affect the static and dynamic behavior of rotating nanobeams. It is found that the physical fields strongly depend on the nonlocal parameter, the change of the thermal conductivity, rotation speed and the mechanical loads and, therefore, it is not possible to neglect their effects on the manufacturing process of precise/intelligent machines and devices

    Two-temperature dual-phase-lags theory in a thermoelastic solid half-space due to an inclined load

    Get PDF
    This article addresses the thermoelastic interaction due to inclined load on a homogeneous isotropic half-space in context of two-temperature generalized theory of thermoelasticity with dual-phase-lags. It is assumed that the inclined load is a linear combination of both normal and tangential loads. The governing equations are solved by using the normal mode analysis. The variations of the displacement, stress, conductive temperature, and thermodynamic temperature distributions with the horizontal distance have been shown graphically. Results of some earlier workers have also been deduced from the present investigation as special cases. Some comparisons are graphically presented to estimate the effects of the two-temperature parameter, the dual-phase-lags parameters and the inclination angle. It is noticed that there is a significant difference in the values of the studied fields for different value of the angle of inclination. The method presented here maybe applicable to a wide range of problems in thermodynamics and thermoelasticity

    Thermo-Optical Mechanical Waves in a Rotating Solid Semiconductor Sphere Using the Improved Green–Naghdi III Model

    No full text
    The current study investigates thermophotovoltaic interactions using a new mathematical model of thermoelasticity established on a modification of the Green–Naghdi model of type III (GN-III). The basic equations, in which the heat transfer is in the form of the Moore–Gibson–Thompson (MGT) equation, are derived by adding a single delay factor to the GN-III model. The impact of temperature and electrical elastic displacement of semiconductors throughout the excited thermoelectric mechanism can be studied theoretically using this model. The proposed model was used to investigate the interactions between the processes of thermoelastic plasma in a rotating semiconductor solid sphere that was subjected to a thermal shock and crossed to an externally applied magnetic field. The influence of rotation parameters on various photothermal characteristics of silicon solid was presented and explored using the Laplace technique

    Solution of Moore–Gibson–Thompson Equation of an Unbounded Medium with a Cylindrical Hole

    No full text
    In the current article, in the presence of thermal and diffusion processes, the equations governing elastic materials through thermodiffusion are obtained. The Moore–Gibson–Thompson (MGT) equation modifies and defines the equations for thermal conduction and mass diffusion that occur in solids. This modification is based on adding heat and diffusion relaxation times in the Green–Naghdi Type III (GN-III) models. In an unbounded medium with a cylindrical hole, the built model has been applied to examine the influence of the coupling between temperature and mass diffusion and responses. At constant concentration as well as intermittent and decaying varying heat, the surrounding cavity surface is traction-free and is filled slowly. Laplace transform and Laplace inversion techniques are applied to obtain the solutions of the studied field variables. In order to explore thermal diffusion analysis and find closed solutions, a suitable numerical approximation technique has been used. Comparisons are made between the results obtained with the results of the corresponding previous models. Additionally, to explain and realize the presented model, tables and figures for various physical fields are presented

    The Response of Nanobeams with Temperature-Dependent Properties Using State-Space Method via Modified Couple Stress Theory

    No full text
    At present, with the development in nanotechnology, nanostructures with temperature-dependent properties have been used in nano-electromechanical systems (NEMS). Thus, introducing an accurate mathematical model of nanobeams with temperature-dependent properties is a major and important topic for the design of NEMS. This paper aims to discuss nonlocal nanobeams analysis depending on the theories of Euler–Bernoulli and modified couple-stress (MCS). It also is assumed that the thermal conductivity of the nanobeam is dependent on the temperature. Physical fields of the nanobeam are obtained utilizing Laplace transform and state-space techniques. The effects of the size and nonlocal parameters, variability of thermal conductivity and couple stress on various distributions are presented graphically and studied in detail. Numerical results are presented as application scales and the design of nanoparticles, nanoscale oscillators, atomic force microscopes, and nanogenerators, in which nanoparticles as nanobeams act as essential and basic elements

    The effect of pulsed laser radiation on a thermoviscoelastic semi-infinite solid under two-temperature theory

    No full text
    The purpose of this paper is to study the thermoviscoelastic interactions in a homogeneous, isotropic semi-infinite solid under two-temperature theory with heat source. The Kelvin-Voigt model of linear viscoelasticity which describes the viscoelastic nature of the material is used. The bounding plane surface of the medium is subjected to a non-Gaussian laser pulse. The generalized thermoelasticity theory with dual phase lags model is used to solve this problem. Laplace transform technique is used to obtain the general solution for a suitable set of boundary conditions. Some comparisons have been shown in figures to estimate the effects of the phase lags, viscosity, temperature discrepancy, laser-pulse and the laser intensity parameters on all the studied fields. A comparison was also made with the results obtained in the case of one temperature thermoelasticity theory
    corecore